Build Upon²
Energy Renovation Framework

November 2021

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 840926
The BUILD UPON² Project

We are in a state of climate emergency. We must act now to reach net zero carbon by 2050 - and municipalities can lead the way. To get there, local authorities must unlock the huge potential of their buildings - and building renovation in particular.

Deep building renovation has far-reaching benefits for society as increasing indoor comfort and air quality avoids illnesses and premature deaths associated with living in cold and damp homes. This in turn reduces pressure on healthcare and social services.

The EU Horizon 2020 funded BUILD UPON² project will empower municipalities across Europe to join forces with national governments and industry to decarbonise their existing building stock by 2050. BUILD UPON² will strengthen the local effectiveness and implementation of the national building renovation strategies required by the EU Energy Performance of Buildings Directive (EPBD).

www.worldgbc.org/build-upon

About the Turkish Green Building Council

Turkish Green Building Council (CEDBIK) started its activities in 2007 with its 25 founding members. The main establishment objectives of CEDBIK can be listed as ensuring the development of the building sector in the light of sustainability principles, ensuring the spread of environmentally friendly green buildings, and raising social awareness. CEDBIK organizes introduction and technical training regarding some of the international green building certification systems that are widely used throughout the world. CEDBIK has also developed B.E.S.T (Ecological and Sustainable Design in Buildings) Residential Certification system, which can be implemented for new residential projects in Turkey.

“Eskişehir Metropolitan Municipality considers the urgent need for sustainable energy and climate strategies through urban renovation attempts. Build Upon2 offers partner cities a new platform to see the variety and the potential common goals to build resilient strategies for the endless renovation process.”

- Hale Kargin Kaynak
Head of Social Services Department
Eskişehir Metropolitan Municipality

“The BU2 Framework is a good opportunity for Turkey. Thanks to it, Turkey will be able to understand European Local Governments’ systems and to bring their advantages sides to our country. In today’s world where knowledge is very valuable, the framework will be our greatest helper in understanding the current situation, producing solutions to problems, and creating value-added works for our future.”

- Mehmet Sami KILIÇ
Turner International
Turkish Green Building Council
The objective of this technical manual is to support Turkey local authorities in using the core indicators of the Build Upon² Energy Renovation Framework (the Framework). This document was developed based on the feedback received from the pilot local authorities on V4 of the Framework (D2.8) following the testing phase. Additional feedback was received from the project National Steering Group.

The Turkish Green Building Council (TGBC)(CEDBIK) would like to thank the members of Turkey’s National Steering Group and the four local authorities involved in the pilot phase. These are Eskisehir Metropolitan Municipality, Bursa Metropolitan Municipality, Izmir Metropolitan Municipality and Sakarya Metropolitan Municipality.

Main Author(s)
Engin Isiltan & Furkan Gultekin – Turkish Green Building Council

Contributors
Hanna Balik – Turkish Green Building Council

About

Turkey’s National Steering Group

CEPHEDER
Aylin Kalav

SHURA
Değer Saygın

MEDIPOLE UNIVERSITY
Duygu Erten

IZODER
Güneş Kocaoğlan
Yüzügür

WRI
Meltem Bayraktar

ISTANBUL METROPOLITAN MUNICIPALITY
Meryem Kayan

OZYEGIN UNIVERSITY
Neşe Ganiç Sağlam

ETGB
Oğuz Kürşat Kabakçı

EBB
Özgün Çalışkan

IZODER
Timur Diz

ETKB
Ümit Çalışoğlu

MoEU
Yeliz Taniş
Within the Framework, building professionals are defined as those involved in the design of energy renovation. In Turkey, these are Architects, Engineers, Building surveyors, project managers, site managers, and National and local decision-makers. Source.

Within the Framework, construction workers are defined as those involved in the installation of energy renovation. In Turkey, these are electricians, plumbers, bricklayers and stone layers, carpenters and joiners, plasterers, glaziers, PV and solar installers, biomass boiler installers, heat pump installers, and insulation installers.

Direct local jobs are jobs supported as a result of the intervention (e.g. designing renovation projects and working on the construction site) – Source: Definition adapted from C40 Cities, The Multiple benefits of deep retrofits - A toolkit for cities.

Energy Renovation refers to works that improve the energy efficiency of a building. Energy renovation works typically improves building envelope and/or technical building system, such as heating, cooling, ventilation, hot water and lighting. European Commission, 2019. For further information on energy renovation works see appendix 1.
Onsite renewable refers to the energy, electrical and thermal, generated by renewables within the site boundary to cover the building energy demand.

Primary Energy takes account of the energy losses due to energy transformation such as electricity generation and also the losses from transmission and distribution.

According to the EN ISO 7730, **thermal comfort** is that condition of mind which expresses satisfaction with the thermal environment.

Net floor area is the total useful floor area of the property measured in square meters.

Onsite renewable refers to the energy, electrical and thermal, generated by renewables within the site boundary to cover the building energy demand.

Overheating Risk is defined as "the phenomenon of a person experiencing excessive or prolonged high temperatures within a building, resulting from internal and/or external heat gains, and which leads to adverse effects on their comfort health or productivity".

Source: ZeroCarbon HUB, 2015, Defining Overheating – Evidence Review

Renewable energy are energy sources that can be used without depleting their reserves. Common sources of renewable energy are bioenergy, geothermal, hydropower, ocean, solar and wind. The national definitions and methods for procurement in relation to renewables take precedence over the principles and methods listed above.

According to the EN ISO 7730, **thermal comfort** is that condition of mind which expresses satisfaction with the thermal environment.

Ventilation is the supply of fresh outside air and the removal of stale indoor air to or from spaces in a building.

Energy poverty can be defined as "a situation where a household or an individual is unable to afford basic energy services (heating, cooling, lighting, mobility and power) to guarantee a decent standard of living due to a combination of low-income, high-energy expenditure and low energy efficiency of their homes". European Commission, Citizens’ Energy Forum 2016 - Definition used by the Covenant of Mayors.

There is no standard definition of energy poverty at EU level. It is quantified in Turkey using what is known as the expenditure method of measuring energy poverty, whereby a household that spends more than 10% of their income on energy is considered to be in energy poverty. Source: Department of Communications, Energy and Natural Resources (2015).

Final/Delivered energy is the total energy consumed by end users, such as households, industry and businesses. It is the energy which reaches the final consumer’s door and excludes that which is used by the energy sector itself. It is the energy that is metered at the property.

Heating System is the mechanical system that supplies space heating to the building.

Investment in energy renovation refers to all investments to improve the energy efficiency of a building. It includes investments in light, medium and deep renovations.

Primary Energy takes account of the energy losses due to energy transformation such as electricity generation and also the losses from transmission and distribution.

Renewable energy are energy sources that can be used without depleting their reserves. Common sources of renewable energy are bioenergy, geothermal, hydropower, ocean, solar and wind. The national definitions and methods for procurement in relation to renewables take precedence over the principles and methods listed above.

According to the EN ISO 7730, **thermal comfort** is that condition of mind which expresses satisfaction with the thermal environment.
About The Framework

The objective of the Framework is to track and monitor holistically the impact of energy renovation at municipality level and to better link local and national initiatives. This in turn should support greater citizen engagement and better policymaking while driving investment.

The Framework is not intended to rank cities with regard to their renovation strategies, but to support them in developing better strategies, and in identifying best practices.

Building Types

All indicators (apart from Soc. 1) can be used on all building typologies:

- **PRIVATE RESIDENTIAL**
- **SOCIAL HOUSING**
- **PUBLIC BUILDINGS**
- **TERTIARY BUILDINGS**

Soc. 1 can be used on Private Residential and Social Housing only.

For ease and given the exemplary role that must be played by public bodies, it is suggested to use the indicators initially to gather data on public buildings and/or social housing owned and managed by the municipality.

Baseline

The baseline year is the year included as baseline in the municipality’s SECAP. For municipalities which are not signatories to the Covenant of Mayors, the baseline agreed at national/regional level should be used. The municipality must be transparent on the selected baseline year. This should be recorded in the spreadsheet developed to use the Framework.

Reporting Period

The public administrations that signed up to the Covenant of Mayors, are committed to submitting monitoring reports at least every second year after submission of the action plan. The monitoring of the indicators of the Framework should complement the SECAP’s indicators and therefore the two monitoring procedures are supposed to be aligned. Monitoring and communicating progress on indicators related to energy and CO₂ emissions reductions, should hence be aligned to the monitoring activity of SECAPs (where possible).

A standard reporting period should be agreed on when using the Framework. Ideally, reporting should be done on a continuous basis and at the very least on an annual basis.

Further information on reporting will be published shortly in D3.3. "Definition of a methodology for reporting and monitoring the implementation of the Framework".
Indicators Methodology

The methodology presented below is a general methodology to be used in Europe. Country specific methodologies have been developed at national level in Croatia, Hungary, Ireland, Italy, Poland, Spain, Turkey and the United Kingdom.

The indicators methodology should be read alongside the methodology for reporting and monitoring the implementation of the Framework (D3.3).
DEFINITION
Percentage of the building stock that has completed energy renovations, breakdown of the depth of renovations and percentage of renovations reaching nZEB standard

UNIT OF MEASURE
Main Metric: Percentage per year of energy renovations completed
Sub Metric 01: Percentage breakdown of depth of energy renovations completed
Sub metric 02: Percentage of energy renovations completed achieving nZEB standard

RELEVANCE
The energy renovation of the building stock is key to reach the 2050 climate neutrality target. The renovated buildings must meet at least the minimum energy performance requirements; therefore, it is important to be aware of the energy consumption reduction achieved. That is why the renovation rate is split up by building type and by depth of the renovation. With that regard, it is also relevant to monitor the percentage of renovated buildings that are compliant with nearly Zero Energy Building’s standard.

EUROPEAN UNION
The increase rate of energy renovation is a key objective at EU level for the decarbonisation of the building stock. More specifically, the following targets have been set:

- **3 %** of the total floor area of heated and/or cooled buildings owned and occupied by central government is renovated each year

 Source: Article 5 of Directive 2012/27/EU (Under the EU Renovation Wave Strategy (2020), it is anticipated that the revised Energy Efficiency Directive will extend that requirement to all public administration levels and increase that rate).

- **Under the EU green deal, annual renovation rate must double to 2.4% per year.**

 Source: ERF Renovation Wave.

OBJECTIVE

METHODOLOGY
Calculate the buildings renovated during the reporting period (ideally annually) as a percentage rate of the overall building stock.

Three levels of renovation, light, medium and deep are defined in the options below.

CALCULATION

Main metric – Renovation Rate

- **Residential**

 \[
 \text{Renovation rate over reporting period} = \frac{\text{Residential units renovated during reporting period}}{\text{Total residential units}} \times 100
 \]

- **Non-Residential**

 \[
 \text{Renovation rate over reporting period} = \frac{\text{Net floor area renovated (m²) during reporting period}}{\text{Total non-residential net floor area (m²)}} \times 100
 \]

Sub metric 01 - Percentage breakdown by depth of energy renovations completed

To assess the depth of energy renovation a pre works and post works EPC is required. If final energy is not available/used in the context of nZEB in your jurisdiction, primary energy may be used.

Municipalities must be fully transparent on the source of data and methodology used.

Step 01 - Define depth of renovation

Option A - Post Renovation Improvement (Renovation Depth)

\[
\text{Depth of renovation} = \frac{\text{Pre works final energy – post works final energy}}{\text{Post works final energy}} \times 100
\]

This method defines the renovation in terms of the improvement in delivered (final) energy. A light renovation is an improvement of 3-30%. A medium renovation is an improvement of 30%-60%. A deep renovation is an improvement of greater than 60%.

Source: Commission Recommendation (EU) 2019/786 of 8 May 2019 on building renovation.

Option B - National nZEB Renovation Methodology

- **Light renovation** = Post works final energy > nZEB (for renovation where applicable) final energy
- **Medium renovation** = Post works final energy < nZEB (for renovation where applicable) final energy
- **Deep renovation** = Post works final energy < (nZEB - for renovation where applicable) final energy x 0.7)
METHODOLOGY (cont.)

This method defines the nZEB renovation target as a medium renovation and is appropriate in countries where a specific nZEB renovation target exists. A light renovation is below this target and a deep renovation is a 30% improvement above this target in terms of final energy.

Step 02 - Percentage breakdown

Percentage breakdown (light/medium/deep) = \(\frac{\text{Number of buildings achieving light/medium/deep}}{\text{Total number of buildings being renovated}} \times 100 \)

Sub metric 02 – nZEB renovation uptake

- Residential
 \[\text{nZEB renovation uptake} = \frac{\Sigma \text{Residential units renovated that reach nZEB standard per year}}{\Sigma \text{Residential units renovated per year}} \times 100 \]

- Non-Residential
 \[\text{nZEB renovation uptake} = \frac{\Sigma \text{Net floor area renovated (m²) to nZEB standard per year}}{\Sigma \text{Net floor area renovated (m²) per year}} \times 100 \]

Source Of Data

For both the main metric and sub metrics, it is important to have figures for the existing property stock in terms of residential units and non-residential floor area. These figures should be available as part of SECAP reporting or collated in line with SECAP requirements for non-signatories.

For the main metric – Renovation rate, the number of renovated homes completed during the reporting period and the m² of renovated non-residential completed during the reporting period must be recorded. The project figures must be added together to get the city-wide data. If this data is not recorded at project level (e.g., for private residential and tertiary buildings), this may be estimated based on external databases such as EPC databases or grants databases.

Sub metric 01 will require a pre works and post works EPC. Municipalities should require EPCs at least for municipal buildings and social housing that they own and manage. This will provide a calculated figure for the proposed reduction in final energy at a project level which can be used to define the depth of renovation as light/medium/deep. If final energy is not available through the National EPC methodology primary energy may be used.

DATA COLLECTION PATHWAY

This is an example of how the Framework works if used on all buildings. For ease, municipalities may only use it initially on their municipal and/or social housing stock.
Env. 1 - Table

TERTIARY AND PUBLIC (based on m²)

<table>
<thead>
<tr>
<th></th>
<th>light</th>
<th>medium</th>
<th>deep</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN METRIC: ENERGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RENOVATION RATE</td>
<td>2.2 %</td>
<td>1.8 %</td>
<td>2.0 %</td>
<td></td>
</tr>
<tr>
<td>SUB METRIC 01:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of which</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>light</td>
<td>29.8 %</td>
<td>54.5 %</td>
<td>43.1%</td>
<td></td>
</tr>
<tr>
<td>medium</td>
<td>2.1 %</td>
<td>27.3 %</td>
<td>16.7%</td>
<td></td>
</tr>
<tr>
<td>deep</td>
<td>68.1 %</td>
<td>18.2 %</td>
<td>41.2%</td>
<td></td>
</tr>
<tr>
<td>SUB METRIC 02:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nZEB uptake</td>
<td>13.5 %</td>
<td>10.2 %</td>
<td>11.7%</td>
<td></td>
</tr>
</tbody>
</table>

RESIDENTIAL (based on # dwellings)

<table>
<thead>
<tr>
<th></th>
<th>light</th>
<th>medium</th>
<th>deep</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN METRIC: ENERGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RENOVATION RATE</td>
<td>2.3 %</td>
<td>1.3 %</td>
<td>1.4 %</td>
<td></td>
</tr>
<tr>
<td>SUB METRIC 01:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of which</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>light</td>
<td>32.6 %</td>
<td>20.0 %</td>
<td>22.4%</td>
<td></td>
</tr>
<tr>
<td>medium</td>
<td>2.2 %</td>
<td>30.0 %</td>
<td>24.0%</td>
<td></td>
</tr>
<tr>
<td>deep</td>
<td>65.2 %</td>
<td>50.0 %</td>
<td>52.8%</td>
<td></td>
</tr>
<tr>
<td>SUB METRIC 02:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nZEB uptake</td>
<td>2.2 %</td>
<td>20.0 %</td>
<td>16.7%</td>
<td></td>
</tr>
</tbody>
</table>

ADDITIONAL GUIDANCE

Private residential & tertiary buildings

- For private residential and tertiary buildings, encourage owners to have pre and post EPC as per above methodology.
- Grants can include a condition by making pre and post EPC a requirement to access public funding.

Actual data

As a result of considerable variables, it is better to calculate the renovation works based on calculated agreed national methodology for EPC. Actual energy use will vary significantly depending on occupation levels, internal temperature requirements, time settings, degree days and other factors which are outside the scope of energy renovation and may skew results for before and after renovation.
METHODOLOGY

Calculate the difference between the emissions before and after the renovation works. The calculation must be done over an agreed reporting period, ideally on a yearly basis.

CALCULATION REDUCTION OF CO₂ EMISSIONS

Main metric

\[
\text{CO}_2 \text{ emissions reduction (Ton CO}_2\text{ eq./year) = } \sum (\text{Pre-renovation CO}_2\text{ emissions} - \text{Post renovation CO}_2\text{ emissions})
\]

Sub metric - Percentage reduction of CO₂ emissions

\[
\text{Percentage reduction of CO}_2\text{ emissions} = \frac{\text{CO}_2\text{ emissions reduction}}{\text{Total sector CO}_2\text{ emissions}} \times 100
\]

Source of data

Municipalities may use option A, B or C or a mix of them. For instance, a municipality may use option A to gather data on energy renovation of municipal buildings and option B to gather data on the private residential sector.

Option A – Starting from data at project level

Municipalities require pre works and post works EPCs* for specific projects (or actual monitoring of final energy consumption for a minimum of 12 months pre and post retrofit) multiplied by the CO₂ emission factors (tCO₂/MWh) for the forms of energy used in the building**.

For ease, it is suggested municipalities initially use it for municipal buildings and social housing that they own and manage. This will provide a calculated – or actual - figure for the proposed reduction in CO₂ emissions at a project level which should be centrally recorded.

Option B – Calculated from Env. 3

In countries where the EPC does not include data on CO₂ emissions, municipalities can calculate it based on Env. 3 (Energy Consumption) using the appropriate CO₂ emission factors (tCO₂/MWh) for the forms of energy used in the building**.

DEFINITION

Reduction in the direct annual CO₂ emissions equivalent achieved through renovation - operational energy only

UNIT OF MEASURE

- **Main Metric**: Ton CO₂ eq/year (total building stock)
- **Sub Metric**: % Reduction in CO₂

RELEVANCE

CO₂ is a major contributor to global warming. CO₂ is emitted into the atmosphere by burning fossils to heat and cool, as well as to produce Domestic Hot Water (DHW) and produce electricity for use in the building. Buildings are responsible for 36% of CO₂ emissions in the European Union (EU).

EUROPEAN UNION

The objective of the indicator is to identify the CO₂ emissions reductions from renovations at a project level and to track overall progress at a municipal level towards EU’s objective of reducing CO₂ emissions by at least 55% by 2030 and to reach carbon neutrality by 2050.

Read more.

OBJECTIVE

Build Upon² Energy Renovation Framework
Option C – Starting from data at municipal level
If gathering data at municipal level, the following methodologies may be used:
- Desegregation of national statistics to the municipal level
- Using data from your local / regional cadastre
- Using your national EPC database
 - Tertiary buildings: Any renovation works will generally be followed by a new lease, in which case a new EPC should be provided.
 - Private homes that are renovated with grant funding are likely to have a post-renovation EPC with a calculated savings. This and the EPC database can be used to estimate CO$_2$ emissions reduction in private residential.

*CO$_2$ emissions are usually displayed on the cover page of the EPC as CO$_2$/sqm. This will need to be cross referenced against the EPC Building Report which will state the floor area.

**For CO$_2$ emission factors, local figures can be used, or default national figures, which are provided at national level, especially for electricity, which depend on the national electricity production annual mix. Certain countries have different electricity conversion factors depending on the region. The Covenant of Mayors for Climate and Energy Reporting Guidelines also include tables for default emissions factors for fuel combustion (fossil and renewable) and for electricity by country and year.

DATA COLLECTION PATHWAY

PROJECT LEVEL

City Wide EPC Data

Ceiling EPC data

PROJECTS

Project 1 - Public Building 400 m2

- Pre EPC Post EPC
 - Pre EPC: 30kgCO$_2$/m2
 - Post EPC: 20kgCO$_2$/m2

Project 2 - Social Housing 40 units average 100 m2

- Pre EPC Post EPC
 - Pre EPC: 30kgCO$_2$/m2
 - Post EPC: 20kgCO$_2$/m2

Project 3 - Public Building 1200 m2

- Pre EPC Post EPC
 - Pre EPC: 28kgCO$_2$/m2
 - Post EPC: 25kgCO$_2$/m2

Project 4 - Private Housing 50 units average 80 m2

- Pre EPC Post EPC
 - Pre EPC: 50kgCO$_2$/m2
 - Post EPC: 20kgCO$_2$/m2

CITY LEVEL

City Wide Data Public Buildings

- Annual Reporting
 - Project 1 - Reduction 4000 kgCO$_2$/annum
 - Project 3 - Reduction 3600 kgCO$_2$/annum
 - 7.6 T CO$_2$/annum

City Wide Data Social and Private Housing

- Annual Reporting
 - Project 2 - Reduction 60000 kgCO$_2$/annum
 - Project 4 - Reduction 120000 kgCO$_2$/annum
 - 180 T CO$_2$/annum

This is an example of how the Framework works if used on all buildings. For ease, municipalities may only use it initially on their municipal and/or social housing stock.
ADDITIONAL GUIDANCE

Private residential & tertiary buildings

- For private residential and tertiary buildings, encourage owners to have pre and post EPC as per above methodology.
- Grants can include a condition by making pre and post EPC a requirement to access public funding.

Actual data

- Once the Framework has been established the use of actual consumption data from projects should be recorded in the Framework. If using actual data, the CO₂ emissions can be obtained by applying conversion factors to the actual energy consumption measured through monitoring or from energy bills (energy utility could provide this data).
- Depending on how Article 13 of Directive 2010/31/EC has been transposed in your country, you may be able to use Display Energy Certificates (DECs) to capture information on actual energy use of public buildings. The gathering of data should also be facilitated in the future by the introduction of smart meters across member states.
Env. 3: Final Energy Consumption Reduction

DEFINITION
Reduction in final (delivered) energy consumption through renovation

UNIT OF MEASURE
Main Metric: kWh/yr - Final (delivered) energy
Sub Metric: % reduction in kWh

RELEVANCE
The final energy consumption (also called delivered energy) reflects the consumed energy by the end-user and depends on the energy needs of the building and the efficiencies of its technical systems. Measuring and assessing the final energy consumption of renovation encourages a building envelope first approach to energy renovation.

EUROPEAN UNION
At least 32.5% improvement in energy efficiency by 2030 - relative to the 2007 modelling projections for 2030.

To achieve the 55% emission reduction target by 2030, the EU should reduce buildings’ final energy consumption by 14% and energy consumption for heating and cooling by 18% (Compared to 2015 levels).

METHODOLOGY
Calculate as the difference between the kWhr/yr consumption before renovation works and after the renovation works. All the forms of energy usage must be considered for HVAC, DHW, ventilation and lighting (or in line with the National Methodology for EPC). The calculation must be done over an agreed reporting period, ideally annually.

CALCULATION

Main Metric - Final energy consumption reduction

Final (delivered) energy consumption reduction (kWh/yr) = Σ (Pre-renovation final energy (kWh/yr) - Post renovation final energy (kWh/yr))

Sub metric - Percentage reduction of final energy consumption over the reporting period

\[
\text{Percentage reduction of final energy consumption} = \frac{\text{Final energy consumption reduction}}{\text{Total sector final energy consumption}} \times 100
\]

Source of data
Municipalities may use option A or B or a mix of both. For instance, a municipality may use option A to gather data on energy renovation of municipal buildings and option B to gather data on the private residential sector. Municipalities must be transparent on the source of data used.

Option A – Starting from data at project level
Municipalities require pre works and post works EPC* for specific projects – or actual monitored data for a minimum of 12 months. For ease, it is suggested municipalities initially use it for municipal buildings and social housing that they own and manage. This will provide a calculated – or actual - figure for the proposed reduction in final energy kWh at a project level which should be centrally recorded.

*Final (delivered) energy by source of energy is usually displayed on the results page of the EPC as kWh/m² year (total and per usage). This will need to be cross referenced against the EPC Building Report which will state the floor area. If final energy is not available through the National EPC methodology primary energy may be used.

Option B – Starting from data at municipal level
If gathering data at municipal level, the following methodologies may be used:

- Desegregation of national statistics to the municipal level
- Using data from your local / regional cadastre
- Using your national EPC database
 - Tertiary buildings: Any renovation works will generally be followed by a new lease, in which case a new EPC should be provided.
 - Private homes that are renovated with grant funding are likely to have a post renovation EPC with a calculated savings. This and the EPC database can be used to estimate reduction in kWh in private residential.
DATA COLLECTION PATHWAY

Project 1 - Public Building 400 m²
Pre EPC: 150 kWh/m²
Retrofit: Post EPC: 50 kWh/m²

City Wide Data Public Buildings
Annual Reporting
Project 1 - Reduction 20000 kWh/Annum

Project 3 - Public Building 1200 m²
Pre EPC: 140 kWh/m²
Retrofit: Post EPC: 125 kWh/m²

City Wide Data Public Buildings
Annual Reporting
Project 3 - Reduction 20000 kWh/Annum

Project 2 - Social Housing 40 units average 100 m²
Pre EPC: 150 kWh/m²
Retrofit: Post EPC: 100 kWh/m²

City Wide Data Social and Private Housing
Annual Reporting
Project 2 - Reduction 300000 kWh/Annum
Project 1 + 2 + 3 + 4 - Reduction 938,000 kWh/Annum
Reporting integrated with SECAPs

Project 4 - Private Housing 50 units average 80 m²
Pre EPC: 250 kWh/m²
Retrofit: Post EPC: 100 kWh/m²

City Wide Data Social and Private Housing
Annual Reporting
Project 4 - Reduction 600000 kWh/Annum

Tertiary buildings
Statistical data

Private housing Data from external databases (e.g. EPC database)

CITY LEVEL

ADDITIONAL GUIDANCE

Private residential & tertiary buildings

- For private residential and tertiary buildings, encourage owners to have pre and post EPC as per above methodology.
- Grants can include a condition by making pre and post EPC a requirement to access public funding.

Actual data

- Once the Framework has been established the use of actual consumption data from projects should be recorded in the Framework. If using actual data, the energy consumption prior to the renovation works should be assessed (from actual meter readings on bills) for at least 12 months and compared against the energy consumption post works for another 12 months.
- Depending on how Article 13 of Directive 2010/31/EC has been transposed in your country, you may be able to use Display Energy Certificates (DECs) to capture information on actual energy use of public buildings. The gathering of data should also be facilitated in the future by the introduction of smart meters across member states.

This is an example of how the Framework works if used on all buildings. For ease, municipalities may only use it initially on their municipal and/or social housing stock.
Env. 4: Additional Renewable Energy Production

DEFINITION
Increase in renewable energy generated and used on site as a result of energy renovation
EPBD 2018/844 Annex I, Point 2

RELEVANCE
The provision of additional renewables for both electricity and heating will replace fossil fuels and associated CO₂ emissions with clean renewable energy. It also reduces energy dependence and provides security and diversification of energy supply.

EUROPEAN UNION
The objective of the indicator is to capture data on the additional energy produced from renewable resources on site or nearby as a result of energy renovation. The overall goal is to increase renewable energy sources consumption to 32% by 2030 - Directive (EU) 2018/2001.

OBJECTIVE

UNIT OF MEASURE
Main Metric: kWh/yr from renewables as part of renovation projects
Sub Metric: % increase in kWh from renewables as part of renovation projects

METHODOLOGY
Calculate as the difference between the kWh generation from renewable resources on site or nearby before renovation works and after the renovation works. The calculation must be done over the agreed reporting period, ideally annually.

CALCULATION
Main Metric - Increase in kWh/year from renewables
Increase in kWh/year from renewables = Σ (Post Renovation kWh/year from renewables produced onsite or nearby - Pre renovation kWh/year from renewables produced onsite or nearby)

Sub metric - Percentage increase in kWh/year from renewables
Percentage increase in kWh/year from renewables = \(\frac{\text{Increase in kWh/year from renewables produced onsite or nearby}}{\text{Total energy production kWh/year from renewables produced onsite or nearby}} \times 100 \)

Source of data
Municipalities may use option A or B or a mix of both. For instance, a municipality may use option A to gather data on energy renovation of municipal buildings and option B to gather data on the private residential sector.

Option A – Starting from data at project level
Municipalities require pre works and post works EPCs* for specific projects – or actual monitored data for a minimum of 12 months pre and post renovation. For ease, it is suggested municipalities initially use it for municipal buildings and social housing that they own and manage. This will provide a calculated – or actual - figure for the proposed renewable energy in kWh at a project level which should be centrally recorded.

Option B – Starting from data at municipal level
If gathering data at municipal level, the following methodologies may be used:
• Desegregation of national statistics to the municipal level
• Using data from your local / regional cadastre
• Using your national EPC database
 - Tertiary buildings: Any renovation works will generally be followed by a new lease, in which case a new EPC should be provided.
 - Private homes that are renovated with grant funding are likely to have a post renovation EPC with a calculated savings. This and the EPC database can be used to estimate reduction in kWh in private residential.

*Renewables energy is usually displayed on the results page of the EPC as kWh/sqm. This will need to be cross referenced against the EPC Building Report which will state the floor area.
PRIVATE RESIDENTIAL & TERTIARY BUILDINGS

- For private residential and tertiary buildings, encourage owners to have pre and post EPC as per above methodology.
- Grants can include a condition by making pre and post EPC a requirement to access public funding.

ACTUAL DATA

- Once the Framework has been established, the use of actual consumption data from projects should be recorded in the Framework.
- If using actual data, the energy consumption prior to the renovation works should be assessed (from actual meter readings on bills) for at least 12 months and compared against the energy consumption post works for another 12 months. Depending on how Article 13 of Directive 2010/31/EC has been transposed in your country, you may be able to use Display Energy Certificates (DECs) to capture information on actual energy use of public buildings. The gathering of data should also be facilitated in the future by the introduction of smart meters across member states.
Soc. 1: Energy Poverty Reduction

DEFINITION
Percentage of households living in renovated homes removed from risk of energy poverty post energy renovation

UNIT OF MEASURE
Percentage

RELEVANCE
As Recital 59 of the recast Electricity Directive recapitulates, energy poverty arises from a combination of low income, high expenditure on energy, and poor energy efficiency of dwellings. Therefore, it is a multidimensional phenomenon that must be approached comprehensively, where improving the building thermal quality through renovation is one of the key elements to tackle. With nearly 34 million Europeans unable to afford to keep their homes adequately warm in 2018, energy poverty is a major challenge for the EU. Source: 2018. Eurostat, Statistics on Income and Living Conditions (SILC).

EUROPEAN UNION
The objective of the indicator is to assess the impact of energy efficiency renovation on reducing the risk of energy poverty.

OBJECTIVE
Calculate the percentage of energy renovation works which lead to a decrease in number of households at risk of energy poverty. Ideally, this data should be compiled at municipal level on an annual basis. Municipalities are also encouraged to capture city-wide data within the Framework where they exist.

UNIT OF MEASURE
Percentage

METHODOLOGY
Calculate the percentage of energy renovation works which lead to a decrease in number of households at risk of energy poverty. Ideally, this data should be compiled at municipal level on an annual basis. Municipalities are also encouraged to capture city-wide data within the Framework where they exist.

CALCULATION
Percentage of households living in renovated homes removed from risk of energy poverty = \frac{(\text{Number of households at risk of energy poverty pre-renovation work} - \text{Number of households at risk of energy poverty post-renovation work})}{\text{Number of residential units renovated}} \times 100

Source of data
EU Guidance on energy poverty accompanying the Commission Recommendation on energy poverty (C/2020/9600) highlights that “to quantify households in energy poverty according to transparent criteria Member States need to develop a working definition of the concept of energy poverty and make it publicly available.” Article 29 of the recast Electricity Directive refers to Member States’ obligation to assess the number of households in energy poverty and provides that Member States must establish and publish the criteria underpinning this assessment.

Energy poverty is a multidimensional phenomenon. If no official definition has been adopted in your country, it is hence recommended to use a mix of the indicators developed by the EU Energy Poverty Observatory. More specifically, a working group of key stakeholders should be set up to agree on indicator(s) that would suit the jurisdiction best. Alternative methodologies may require capturing additional data such as information on income, fuel price, etc. To do so, you may want to adapt and use the tenants’ questionnaire developed as part of the Build Upon project (see Appendix 3).

Municipalities may use option A or B or a mix of both. For instance, a municipality may use option A to gather data on energy renovation of the social housing stock they own and manage and option B to gather data at city level. The methodology used and any assumptions made must be fully disclosed and recorded.

Option A – Starting from data at project level
To assess the impact of a renovation project on energy poverty risk, a municipality should collect data on the number of units renovated, as well as on the number of households at risk of energy poverty pre and post energy renovation as per national definition.

If no national definition has been agreed on, indicators developed by the EU Energy Poverty Observatory may be used.

Option B – Starting from data at municipal level
If gathering data at municipal level, the municipality should collect data on the number of residential units renovated in a given reporting period (this data is also required in Env. 1). The municipality should also use any data it has on households at risk of energy poverty at the beginning and at the end of the reporting period. This data may come from their own statistics or be desegregated from national statistics.
This is an example of how the Framework works if used on both social housing and private residential buildings. For ease, municipalities may only use it initially on the social housing stock they own and manage.

DATA COLLECTION PATHWAY

1. **Project 1 - Social Housing 10 units renovated**
 - Number of units renovated: 10
 - Results: Retrofit

2. **Project 2 - Social Housing 60 units renovated**
 - Number of units renovated: 60
 - Results: Retrofit

3. **Project 3 - Social Housing 135 units renovated**
 - Number of units renovated: 135
 - Results: Retrofit

City Wide Data
- 205 units renovated
- 55 households no longer at risk of energy poverty
- 27% renovation led to a decrease in energy poverty

City Wide Energy Poverty Data
- Annual Reporting
- This may be integrated into SECAP

Country Wide Energy Poverty Data
- Annual Reporting

ADDITIONAL GUIDANCE

Ensure the methodology used in the Framework to define households at risk of energy poverty remains fully aligned with the methodology developed and used at national level.

Encourage private social housing providers to capture data at project level when renovating their own stock.

Encourage municipalities to capture data on actual energy use (utility bills) and income for a minimum of 12 months pre and post energy renovation for the social housing they own (where possible).
DEFINITION
Renovated building stock with improved Indoor Air Quality (IAQ) in the conditioned spaces.

UNIT OF MEASURE
Main Metric: No. of residential units or Non-residential floor area (m²)
Sub Metric: Percentage improvement

RELEVANCE
Europeans spend up to 90% of their time indoors. Indoor air pollution is a major environmental health and well-being concern as it can lead to serious health effects. The contaminants that condition IAQ are CO₂, carbon monoxide, particulate matter and volatile organic compounds (VOCs). Most indoor air pollution comes from sources inside the building. It is hence key to control the sources of these contaminants and to ensure its removal through proper ventilation. Good ventilation is critical in well insulated buildings and must be considered as part of any energy renovation works.

EUROPEAN UNION
The objective of the indicator is to provide safe buildings to people by eliminating the risks that might result in unknowingly reducing the indoor air quality as a result of carrying out energy renovation works.

To achieve the 35% emission reduction target by 2030, the EU should reduce buildings’ final energy consumption by 14% and energy consumption for heating and cooling by 18% (Compared to 2015 levels).

Source: EU’s Renovation Wave Strategy

OBJECTIVE

METHODOLOGY
Calculate improvement in IAQ post energy renovation. This must be reported over an agreed reporting period, ideally annually. This indicator can be used initially at project level. Once it has been adopted and reported across a sufficient number of projects it can be reported at a city level.

CALCULATION

Main Metric - Renovated building stock with improved IAQ
No. of residential units with improved IAQ = Σ renovated units with adequate IAQ
Non-residential floor area (m²) with improved IAQ = Σ area of renovated buildings (m²) with adequate IAQ

Sub metric – Percentage of renovated building stock with improved IAQ

\[
\text{Percentage of residential units with improved IAQ} = \frac{\text{Σ renovated units with adequate IAQ}}{\text{Total building renovated}} \times 100
\]

\[
\text{Percentage of non-residential floor area (m²) with improved IAQ} = \frac{\text{Σ area of renovated buildings (m²) with adequate IAQ}}{\text{Floor area (m²)}} \times 100
\]

Source of data
Municipalities may use option A, B, C, or a mix of them. In all cases, municipalities must be transparent on the methodology used and assumptions made.

Option A – Ventilation systems in compliance with National Building standards or EN 16798-1
Count the dwellings and spaces in renovated buildings that comply with the predefined (theoretical) airflow rates count in the national building code to a good indoor air quality of the indoor air (depending on building occupancy patterns and expectation level). If the national building code has no clear requirements to ensure a good IAQ, EN 16798-1* reference should be taken. Where required by National building code standards, the ventilation system should be commissioned to ensure it functions correctly. This applies to both natural and mechanically assisted ventilation systems.

*The EN 16798-1:2019 is a non-obligatory standard. It was developed to guarantee that well-being and comfort of building occupants is systematically taken into account when new and existing buildings are (re)designed to improve their energy efficiency.

Option B – Occupant Survey
The indoor air quality is measured by occupant surveys pre and post renovations – ideally, 12 months post-renovation, once the building is occupied. Count the dwellings or area (m²) with...
METHODOLOGY (cont.)

Improved air quality post energy renovation. The main reference standards for post occupancy surveys of indoor environments and user perceptions of comfort and well-being are ISO 10551 and ISO 28802. The survey methodology should clearly state the metrics of improvement.

References and examples:
1. Survey developed by UKGBC for Leeds City Council as part of the Build Upon project (see Appendix 3 – Tenant’s questionnaire)
2. BusMethodology
3. Center for the Built Environment - Harnessing Occupant’s Insights - What we measure
4. Survey developed for synikia project (see appendix G of the document)

Option C – In-situ monitoring on a sampling basis

CO_2 is a good proxy of the IAQ as it can provide an indication of the ventilation rate in spaces used by people. In-situ monitoring measures the CO_2 level in units of parts per million (ppm). To consider that a space has an adequate IAQ, the measurements of CO_2 should not exceed the defined range (IEQ II in table 1 or national requirement) by more than 5% of the occupied time**.

**Based on “Methodology framework for plus energy buildings and neighborhood” (synikia innovation project)

Table 1. CO_2 concentrations per category assuming a standard CO_2 emission of 20L/h per person (Source: EN ISO 16798-1-2019)

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>CO_2 Concentrations above outdoor during full occupancy (outdoor levels assumed to be equal to 400 ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEQ I</td>
<td>≤ 550 ppm</td>
</tr>
<tr>
<td>IEQ II</td>
<td>> 550 ppm and ≤ 800 ppm</td>
</tr>
<tr>
<td>IEQ III</td>
<td>> 800 ppm and ≤ 1350 ppm</td>
</tr>
<tr>
<td>IEQ IV</td>
<td>> 1350</td>
</tr>
</tbody>
</table>

DATA COLLECTION PATHWAY

This is an example of how the Framework works using option A. For ease, municipalities may only use it initially on their municipal and/or social housing stock.
ADDITIONAL GUIDANCE

Encourage municipalities as per option A to carry out design of ventilation systems as per National Building Code or EN-16798-1 and commissioned where applicable and include in the scope of works to the design team and installers.

Encourage municipalities as per option C to carry out in-situ monitoring on a sample of buildings in particular a reasonable sample of social housing that do not have commissioned ventilation systems.
DEFINITION
Renovated building stock with an improved winter thermal comfort (WTC) in all the conditioned spaces.

UNIT OF MEASURE
- **Main Metric:** no. of residential units or non-residential floor area (m²)
- **Sub Metric:** Percentage improvement

RELEVANCE
Thermal comfort can improve people’s health and well-being. Thermal comfort is defined by environmental parameters, like temperature, relative humidity and air velocity, and by personal parameters such as clothing, level of activity, gender and age, which affect a person’s metabolic rate.

EUROPEAN UNION
In 2018, nearly 34 million Europeans were unable to afford to keep their homes adequately warm. People in inefficient buildings are more exposed to cold spells, heatwaves and other impacts of climate change. Inadequate comfort in housing and work environments, such as inadequate indoor temperatures and deficient air quality, contribute to lower productivity, health problems and higher mortality and morbidity.

Source: EU's Renovation Wave Strategy.

OBJECTIVE

METHODOLOGY
Calculate the number of renovated dwellings and areas (m², for non-residential) with adequate winter thermal comfort conditions established through the options below. This must be done over an agreed reporting period, ideally annually. This indicator can be used initially at project level. Once it has been adopted and reported across a sufficient number of projects it can be reported at a city level.

CALCULATION

Main Metric - Renovated building stock with improved winter thermal comfort

- **Residential**
 \[\text{No. of residential units with improved WTC} = \sum \text{renovated units with adequate WTC} \]

- **Non-Residential**
 \[\text{Non-residential floor area (m²) with improved WTC} = \frac{\sum \text{area of renovated buildings (m²) with adequate WTC}}{\text{Total building renovated}} \times 100 \]

Sub metric – Percentage of renovated building stock with improved winter thermal comfort

- **Residential**
 \[\text{Percentage of residential units with improved WTC} = \frac{\sum \text{renovated units with adequate WTC}}{\text{Total area (m²) of renovated buildings}} \times 100 \]

- **Non-Residential**
 \[\text{Percentage of non-residential floor (m²) with improved WTC} = \frac{\sum \text{area of renovated buildings (m²) with adequate WTC}}{\text{Total area (m²) of renovated buildings} \times 100} \times 100 \]

Source of data
Municipalities can use one or more of the following methods. In all cases, they must be transparent on the methodology used and the assumptions made.

Option A – Heating systems designed and installed as per National Building Code Standard or EN 16798-1:2019

Count the number of renovated dwellings and m² in non-residential buildings that comply with the predefined (theoretical) indoor winter thermal comfort conditions as set in the national building code at design stage.

Calculation

\[\text{No. of residential units with improved WTC} = \sum \text{renovated units with adequate WTC} \]

\[\text{Non-residential floor area (m²) with improved WTC} = \frac{\sum \text{area of renovated buildings (m²) with adequate WTC}}{\text{Total building renovated}} \times 100 \]

\[\text{Percentage of residential units with improved WTC} = \frac{\sum \text{renovated units with adequate WTC}}{\text{Total area (m²) of renovated buildings}} \times 100 \]

\[\text{Percentage of non-residential floor (m²) with improved WTC} = \frac{\sum \text{area of renovated buildings (m²) with adequate WTC}}{\text{Total area (m²) of renovated buildings} \times 100} \times 100 \]
METHODOLOGY (cont.)

If the national building code has no clear requirements to ensure the winter thermal comfort at design stage, EN 16798-1:2019 reference can be taken according to the Category II temperature ranges**. There is no standard stating the acceptable hours outside the comfort temperatures but 5% of annual occupied hours is sometimes referenced*****.

Option B – Occupant Survey

In this case the winter thermal comfort is determined based on the level of dissatisfaction with the thermal comfort conditions from post-occupancy surveys. These should be completed 12 months post-completion, once the buildings are occupied.

The main reference standards for post occupancy surveys of indoor environments and user perceptions of comfort and well-being are ISO 10551 and ISO 28802***.

References and examples:
- Survey developed by UKGBC for Leeds City Council as part of the Build Upon2 project (see Appendix 3 – Tenant’s questionnaire)
- https://busmethodology.org.uk
- https://cbe.berkeley.edu/resources/occupant-survey/what-we-measure/
- Survey developed for synikia project.

Option C – In-Situ monitoring on a sampling basis****

Monitoring (hourly) data on the thermal conditions in a building can be used to assess the winter thermal comfort. If the national building code establishes minimum requirements in relation to winter thermal comfort, then these should be taken according to the reference for the monitoring. As in option A, if the national building code has no clear requirements to ensure the winter thermal comfort at project stage, EN 16798-1:2019 reference can be taken as reference for the monitoring.

The main reference standards for post occupancy surveys of indoor environments and user perceptions of comfort and well-being are ISO 10551 and ISO 28802***.

*The EN 16798-1:2019 is a non-obligatory standard and was developed to guarantee that well-being and comfort of building occupants is systematically taken into account when new and existing buildings are (re)designed to improve their energy efficiency.[1]

**Based on Level(s) indicator 4.2 for Level 2
***Level(s) indicator 4.1
****Based on Level(s) indicator 4.2 for Level 3
ADDITIONAL GUIDANCE

It must be assumed that if there is no data on design of heating systems that no design and commissioning of the system took place and winter thermal comfort may be compromised post renovation.

Encourage municipalities as per option A to carry out an assessment of the requirements to ensure the WTC at project stage.

Encourage municipalities as per option C to carry out on site testing on a sample of buildings to ensure adequate internal temperature is achieved. Thermal probes installed at sampling locations inside the building or for each representative residential property type. In residential buildings, at least the living rooms should be considered. For multi-family buildings, a sample of each distinctive configuration and orientation of apartments shall be assessed. In tertiary and public buildings, the reported performance shall apply to those spaces or zones that account for >10% of the total useful floor area of the building. Data shall be collected for 12-month post-renovation once the building is occupied******.

******Based on Level(s) indicator 4.2 for Level 3
DEFINITION
Summer Thermal Comfort refers to the renovated building stock with limited overheating risks.

UNIT OF MEASURE
Main Metric: No. of residential units or non-residential floor area (m²)
Sub Metric: Percentage improvement

RELEVANCE
The frequency and severity of climate and weather extremes is increasing in Europe. Excess heat affects the health and well-being of occupants, especially if sleep is degraded. Factors such as climate change, increased urbanisation, high rise apartments and winter energy efficiency measures increase the overheating risk. The thermal performance of buildings during summertime is usually measured against a benchmark temperature that should not be exceeded for a certain number of hours during an annual occupied period.

EUROPEAN UNION
Extreme weather and long-lasting climatic changes can damage buildings and their mitigation potential, e.g., solar panels after hailstorms. It can also impact people’s comfort and well-being. The Commission is exploring options to better predict climate-induced stress on buildings and to integrate climate resilience considerations into the construction and renovation of buildings.

Source: EU Climate Adaptation Strategy (2020)

OBJECTIVE

METHODOLOGY
Count the number of renovated dwellings and (m²) in non-residential buildings that achieve adequate summer thermal comfort as per options below:
This should be done over an agreed reporting period, ideally annually.
This indicator can be used initially at project level. Once it has been adopted and reported across a sufficient number of projects it can be reported at a city level.

CALCULATION
Main Metric – Renovated building stock with improved summer thermal comfort

• Residential
 No. of renovated residential units assessed with improved summer thermal comfort = \(\sum \) renovated units achieving adequate summer thermal comfort

• Non-Residential
 Non-residential floor area (m²) with improved summer thermal comfort = \(\sum \) area of renovated buildings (m²) achieving adequate summer thermal comfort.

Sub metric

Source of data
Municipalities can use one or more of the following methods. In all cases, municipalities must be transparent on the methodology used and any assumptions made.

Option A – National Building Code Standard / CIBSE TM52
This option is based on the assessment of the theoretical overheating risk at design stage. Compliant dwellings and spaces (m²) in renovated buildings are those below the benchmark (theoretical) of overheating criterion established in the national building code. If there is no definition in the national building code, CIBSE TM52 reference (TM59 for homes) can be used.
METHODOLOGY (cont.)

Option B – Occupant questionnaire
In this case post-occupancy surveys are used to determine the level of dissatisfaction with summer thermal comfort post energy renovation. These should be completed 12 months after renovation, once the building is occupied.

The main reference standards for post occupancy surveys of indoor environments and user perceptions of comfort and well-being are ISO 10551 and ISO 28802*.

References and examples:
• Survey developed by UKGBC for Leeds City Council as part of the Build Upon2 project (see Appendix 3 – Tenant’s questionnaire)
• https://busmethodology.org.uk
• https://cbe.berkeley.edu/resources/occupant-survey/what-we-measure/
• Survey developed for synikia project, Appendix G

Option C – In-situ monitoring on a sampling basis
(Hourly) monitoring of the thermal conditions in a building can be used to assess if overheating is occurring. National criteria should be taken as reference for defining when overheating occurs. If there is no definition in the national building code, CIBSE TM 59 reference (TM59 for homes) can be used.

*Level(s) indicator 4.1

DATA COLLECTION PATHWAY

Contractor Questionnaire
Residential: Does the design demonstrate through compliance with national regulations or CIBSE TM59 that the dwelling does not have a risk of high internal temperature?
Yes - No

Non-Residential: Does the design demonstrate through compliance with national regulations or CIBSE TM52 that overheating is avoided?
Yes - No

City Wide Data
Annual Reporting
100% of renovated buildings comply with option A.

City Wide Data
Annual Reporting
33% of social housing assessed to have no risk of high internal temperature.

This is an example of how the Framework works using option A.
ADDITIONAL GUIDANCE

It must be assumed that if there is no data on design of heating systems that no design and commissioning of the system took place and summer thermal comfort may be compromised post renovation.

Encourage municipalities as per option A to assess limiting heat gains to national regulations or CIBSE TM59 for Residential units / CIBSE TM52 for non-residential buildings.

Encourage municipalities as per Option C to carry out on site testing on a sample of buildings to ensure adequate internal temperature is achieved. Thermal probes should be installed at sampling locations inside the building or each representative residential property type. In residential buildings, at least the living rooms should be considered. For multi-family buildings, a sample of each apartment’s distinctive configuration and orientation shall be assessed. In tertiary and public buildings, the reported performance shall apply to those spaces or zones that account for >10% of the total useful floor area of the building. Data shall be collected for 12-month post-renovation once the building is occupied**.

**Based on Level(s) indicator 4.2 for Level 3.
Eco. 1: Investment costs in energy renovation

DEFINITION
Total amount of money invested in energy renovation projects within the boundary of a municipality each year (or in a specific project/initiative).

UNIT OF MEASURE
Main Metric: ₺ (or national currency) – with breakdown of private/public investment
Sub Metric:
• ₺ (or national currency)/residential unit (and/or m²) renovated
• ₺ (or national currency) /m² of non-residential renovation

RELEVANCE
In economic terms it is very relevant to capture accurate information on how much money is invested annually in energy renovation at municipal and national level, and where this money comes from (public or private investment).

EUROPEAN UNION
To meet the 2050 climate targets, the European Commission estimates that €185 bn must be invested annually in energy renovation in the EU.

OBJECTIVE

METHODOLOGY
Calculate investment/money spent on renovation projects that have been completed within a given reporting period, ideally a year. All costs associated with that project are to be included. Investment/money spent on projects not completed during that reporting period/year should not be included. For further information on items that should or should not be included as energy renovation costs, please check Appendix 1. VAT may be included or excluded and this needs to be clearly stated. Large projects with phased completion stages can include the different stages if that section of the project is fully complete and the costs can be itemised. Municipalities must be fully transparent on the methodology used and assumptions made.

CALCULATION
Main Metric
Total investment costs on energy renovations (₺*) = Σ investments on energy renovation projects completed
With breakdown of private and public (including subsidies) investments.

Sub metric
• Residential
 Investment costs of energy renovation per residential unit and/or m² = \(\frac{\text{Σ Investments on energy renovation of residential buildings (₺*)}}{\text{Σ Units and/or m² renovated}} \) x 100
 With breakdown for social and private housing.

• Non-Residential
 Investment costs of energy renovation per m² renovated = \(\frac{\text{Σ Investments on energy renovation of non-residential buildings (₺*)}}{\text{Σ renovated area (m²)}} \) x 100
 With breakdown for public and tertiary buildings.

*or national currency. When using national currency, please convert the total amount into ₺, at the average of the daily exchange rates published in the C series of the Official Journal of the European Union, calculated over the corresponding reporting period. Please see Appendix 1 for further information.
METHODOLOGY (cont.)

Source of data
Municipalities may use option A or B or a mixed of both. For instance, a municipality may use option A to gather data on projects of municipal buildings and option B to gather data on the private residential sector. Municipalities must be transparent on the methodology used and any assumptions made.

Option A – Starting from data at project level
Municipalities will pay for completed works (municipal buildings and social housing) and should use these figures to calculate the investment in renovation projects. Private homes and tertiary buildings that are renovated with grant funding are likely to have total costs available too.

Option B – Starting from data at municipal level
If gathering data at municipal level, the following methodologies may be used:
- Desegregation of national statistics to the municipal level (this may require an agreement with your national statistics office and/or energy agency).
- Using data from your local / regional cadastrs and/or data from planning permits.

DATA COLLECTION PATHWAY

This is an example of how the Framework works if used on all buildings. For ease, municipalities may only use it initially on their municipal and/or social housing stock.
ADDITIONAL GUIDANCE

Social Housing
All renovation works, and associated costs should be centrally recorded within the local authority.

Public Buildings
All renovation works, and associated costs should be centrally recorded within the local authority.

Private housing and tertiary buildings
- Where possible, municipalities and central government are encouraged to capture accurate data on private energy renovation investment, including on the financial mechanisms used. E.g., low interest loans, green mortgages, and bonds.
- Depending on countries, two alternative methodologies could be used to estimate these investments. The exact methodology may vary depending on local and national circumstances.
 - Option 1 is to capture data on grants allocated for renovation of these buildings and to estimate what percentage of contractors’ renovation works relate to energy renovation projects which have received state or municipal subsidies and to extrapolate from there.
 - Option 2 is to retrieve this information from planning permits (this may only work in some jurisdictions).
- In future, municipalities may consider tracking where the money goes. I.e., if it spent locally, nationally, or on imports. At a project level, this information can be gathered from the contractors and consultants. E.g., through the use of a contractor questionnaire (See appendix 2 for an example of same).
Eco. 2: Cost efficiency of the energy consumption reduction

DEFINITION
Energy consumption saved for each thousand € invested in energy renovation.

UNIT OF MEASURE
- **Main Metric:** kWh saved for each thousand € invested
- **Sub Metric:** kWh/m²/year saved for each thousand € invested

RELEVANCE
Bringing into relation two key parameters of an energy renovation, energy savings (Env. 3) and monetary investment (Eco. 1) allows to analyse the energy efficiency of an investment and its cost-effectiveness. This indicator is critical to ensure value for money is delivered. It should also support municipalities in making a better business case for energy renovation. Furthermore, it will capture any reduction in energy renovation cost.

OBJECTIVE
Although no specific targets have been set at European, national or municipal level, the overall objective is to ensure a highly competitive and innovative energy renovation sector is developed and maintained.

A 2020’s report by the European Court of Auditors highlighted that greater focus on cost-effectiveness is needed in relation to energy efficiency in buildings. Read more.

METHODOLOGY
Calculate the final energy saved (Env. 3) in a given reporting period (ideally annually) through energy renovation per thousands of € invested (Eco. 1).

CALCULATION

Main Metric

\[
\text{Energy efficiency of investment (kWh/saved for each thousand € invested)} = \frac{\sum \text{Final energy consumption reduction (Env. 3) in kWh/year}}{\sum \text{Investment in energy renovation (Eco. 1 in €) / 1000}}
\]

With breakdown per type of building.

Sub metric (Optional)

\[
\text{Energy efficiency of the investment per m² (kWh/m²/year saved for each thousand € invested)} = \frac{\sum \text{Final energy consumption reduction (Env. 3) in kWh/year}}{\sum \text{Renovated floor area (m²)}} \times \frac{\sum \text{Investment in energy renovation (Eco. 1 in €) / 1000}}{\sum \text{Renovated floor area (m²)}}
\]

With breakdown per type of building.

Source of data
When using the Framework, this figure will be automatically calculated based on the data inputted in Env. 3 (Energy Consumption) and Eco. 1 (Investment in Energy Renovation).

* or national currency. When using national currency, please convert the total amount into €, at the average of the daily exchange rates published in the C series of the Official Journal of the European Union, calculated over the corresponding reporting period. Please see Appendix 1 for further information.

ADDITIONAL GUIDANCE
See additional guidance for Env. 3 (Energy Consumption) and Eco. 1 (Investment in Energy Renovation).
Eco. 3: Jobs in energy renovation

DEFINITION
Direct jobs in energy renovation

UNIT OF MEASURE
Full time equivalent (FTE)

RELEVANCE
Supporting jobs is a key benefit of investing in energy renovation. Increased demand for energy efficiency services and technologies have proven to create a large number of local jobs*. For every £1 million invested in energy renovation of buildings, an average of 18 jobs are created in the EU**. The objective of the indicator is to support municipalities and central government in making a better business case for renovation, by showing the positive impact of energy renovation programmes on the jobs market. This is highly relevant in the context of the Covid-19 pandemic and as part of the economic recovery plans.

Source:

There are no specific targets set at European, national or local level for this indicator.

OBJECTIVE

METHODOLOGY

Calculate the direct jobs (FTE) in energy renovation in a given reporting period. Ideally, this should be a year.

CALCULATION

Depending on the municipality’s objective and resources available, municipalities may use option A or B or a mix of both. In all cases, municipalities must be transparent on the methodology and data set used. Any assumptions made should be fully disclosed and recorded.

Option A – Starting from data collected at project level
Direct jobs in energy renovation (FTE) in a reporting period = Σ Labour days (FTE) for energy renovation projects in reporting period.

Option B – Starting from data at municipal level
Direct jobs in energy renovation (FTE) in a reporting period = (Eco. 1 - Investment in energy renovation in the reporting period)/1000000) x Direct jobs proportion* x Direct jobs in energy efficiency renovation multiplier*

Note: This is aligned with the C40 indicator (and methodology) on energy renovation and job creation.

*See Source of data section for further details.

Source of data

Option 1 – Starting from data at project level
Municipalities collect data on number of FTE working on specific projects through a contractor questionnaire – See Appendix 2 / Appendix 1 may also be used to track what relates to energy renovation. For ease, it is suggested municipalities initially use it for municipal buildings and social housing that they own and manage. This will provide a figure at a project level which should be centrally recorded.

Option 2 – Starting from data at municipal level
The effect on jobs can be calculated by applying multipliers to investment in energy renovation (Eco. 1). The methodology is based on the C40, 2020 - The multiple benefits of deep retrofits - A tool kit for cities.

The indicator used to calculate job creation is based on full-time equivalent (FTE) jobs per million Euro spent. Employment creation is calculated across all building typologies. Expenditure is based on the capital cost of the energy renovation programme (Eco. 1) and employment opportunities have been proportioned between direct, indirect and induced job creation. The focus in the Build Upon Framework is on direct local jobs, i.e., jobs created as a result of the intervention (e.g., working on the construction site). C40 have estimated that direct jobs proportion is approximately 33% (0.33 in above calculation).
Multiplier:
- Where local studies detailing the impact of energy renovation on jobs creation are available, data from these studies should be used and inputted as multiplier numbers.
- Based on literature review and where a municipality does not have local studies detailing the impact of energy renovation on jobs creation, the following default values should be used:
 - Total jobs created - lower bound (FTE per million ₽): 12.8
 - Total jobs created - median (FTE per million ₽): 17.12
 - Total jobs created - upper bound (FTE per million ₽): 26.3
This will allow a municipality to obtain an estimate range of the direct jobs created (between the lower and the upper band).
Example:
A municipality invest ₽30 million in energy renovation. Using the default values, direct jobs in energy renovation in the reporting period can be estimated to be between 127 and 260 FTE.
Calculation:
- Lower bound: (30,000,000/1,000,000) x 0.33 x 12.8 = 127
- Upper bound: (30,000,000/1,000,000) x 0.33 x 26.3 = 260
Please see the Framework spreadsheet for further details.
Source: The methodology is based on the C40, 2020 - The multiple benefits of deep retrofits - A toolkit for cities.

This is an example of how the Framework works if used on all buildings. For ease, municipalities may only use it initially on their municipal and/or social housing stock.
Eco. 4: Upskilling in Energy Renovation

Main metric to be used at national or regional level – Please check with your national GBC. Sub-metric to be used at municipal level.

DEFINITION
Number of building professionals and construction workers who upskill in energy renovation annually, including municipal staff.

UNIT OF MEASURE

Main Metric: Number of building professionals and construction workers upskilled in energy renovation

Sub Metric: Number of municipal employees upskilled in energy renovation

RELEVANCE
The building sector offers a large untapped potential for cost-effective energy savings. The most challenging aspect of reducing energy use in the building sector lies in increasing the rate, quality and effectiveness of building renovation, since the current rate of renovation is only 1.2% per year. One significant barrier that hampers the development of effective renovations is the lack of adequate construction skills. Improving the skills of middle- and senior-level building professionals as well as the various trade professionals in the area of sustainable energy-efficient construction is therefore of key importance.

Source: Construction skills: Equipping building professionals with new skills to achieve European energy targets | H2020 | Results Pack | CORDIS | European Commission (europa.eu).

There are no specific targets set at European, national or local level for this indicator.

OBJECTIVE

METHODOLOGY

Main metric: Calculate the number of building professionals and construction workers who have upskilled in energy renovation in a reporting period, ideally annually. This information is to be captured at national or regional level. Please check with your national GBC.

Sub-metric: Calculate the number of building professionals and construction workers employed by the municipality who have upskilled in energy renovation in a reporting period, ideally annually.

CALCULATION

Main Metric

Upskilling in energy renovation = Σ building professionals and construction workers who have upskilled in energy renovation in a reporting period

Sub Metric

Upskilling in energy renovation (municipality employees) = Σ building professionals and construction workers employed by the municipality who have upskilled in energy renovation in a reporting period.

Source of data

If industry bodies do not keep specific data on energy renovation related training courses, a first step is to identify energy renovation training courses available in a region / country. As an example, the process followed in Turkey is described below (Case Study - How this data is captured in Turkey).

Municipalities must be fully transparent on methodology and data source, if any assumptions are made these must be fully disclosed and recorded.

Main Metric

To assess the number of building professionals and construction workers taking part in energy renovation upskilling in a reporting period, the regional / national authorities should liaise with professional bodies and training providers who provide continual professional development (CPD) on energy renovation, and then report on the number of participants receiving CPD certificates from these courses.

Sub Metric

Municipality should record the number of construction workers and building professionals employed by the city completing energy renovation related training courses.
CASE STUDY – HOW THIS DATA IS CAPTURED IN Turkey

This section details the step-by-step approach that was taken in Turkey to gather this data.

Step 1: Develop a comprehensive list of building professionals and construction workers involved in energy renovation.

Step 2: Identify key skills and competences for each category of building professionals and construction workers identified in step 1*.

Step 3: Identify training courses that allow building professionals and construction workers to gain these skills and competences. In Turkey, it was agreed to only capture data on accredited courses. **

Step 4:
- Main metric: Central/regional government to liaise with providers of courses identified in step 3 to get number of building professionals and construction workers who have completed them in a reporting period.
- Sub metric: Municipality (HR Department) to capture data on number of construction workers and building professionals employed by the municipality who have completed these courses in a reporting period.

Note: A multidisciplinary steering group made up of central government representatives, professional bodies, industry and academia was set up to support the Turkish Green Building Council with steps 1, 2 and 3.

*For further information on key skills and competencies identified for each category of building professionals and construction workers in Turkey, please see appendix 9.a of “Developing a comprehensive Energy Renovation Register” (IGBC, LIT, 2020)

**See appendices 9.b and 9.c of “Developing a comprehensive Energy Renovation Register” (IGBC, LIT, 2020) for further information.
DEFINITION
Total financial cost savings for end-users per year based on savings on heating, cooling and DHW, carbon tax (when applicable), and the usable contribution from renewable energy systems.

UNIT OF MEASURE

- **Main Metric:** ₤ (or national currency*)
- **Sub Metric:**
 - ₤ (or national currency*) / number of residential unit renovated
 - ₤ (or national currency*)/m² of non-residential buildings renovated

RELEVANCE
One dimension of value creation by renovation is the extent to which the project generates cost savings for end-users. Energy renovation should not be only presented and perceived as a cost but as a financial benefit, which can be an important trigger for the user acceptance and the market uptake.

No specific targets set at European, national or municipal level. A 2020’s report by the European Court of Auditors highlighted that greater focus on cost-effectiveness is needed in relation to energy efficiency in buildings. Read more.

OBJECTIVE

METHODOLOGY
Calculate the total financial savings as a result of the energy renovation. This methodology can be cross referenced to the Env. 3 – Final Energy Consumption Indicator.

Only projects completed during the reporting period (ideally annually) should be included. Large projects with phased completion stages can include the different stages if that section of the project is fully complete and the costs can be itemised.

This indicator can be used initially at project level. Once it has been adopted and reported across a sufficient number of projects it can be reported at a city level.

Savings in energy bills and carbon taxes, as well as any incomes made from newly installed renewables should be included where applicable. Municipalities must be fully transparent on the methodology and data set used. Any assumptions made must be fully disclosed and recorded.

Main Metric
Total financial savings from energy renovations = Σ financial savings from energy renovations completed projects
With breakdown for residential, social housing, public and tertiary buildings.

Sub metric
- **Residential (private and social):**

 \[
 \text{Average financial savings from energy renovations per residential unit} = \frac{\Sigma \text{Savings from energy renovated residential buildings}}{\Sigma \text{Units renovated}}
 \]

 With breakdown for social and private housing.

- **Non-Residential**

 \[
 \text{Average financial savings from energy renovations per m²} = \frac{\Sigma \text{Savings from energy renovated non-residential buildings}}{\Sigma \text{Units renovated (m²)}}
 \]

 With breakdown for public and private buildings.

Source of data

- **Data at project level**
 Ideally, actual energy bills over a 12-month period pre and post renovation (once the building is occupied) should be used. This will cover all savings on heating, cooling and DHW, carbon tax (when applicable), and the usable contribution from renewable energy systems.

 Alternatively, data on delivered energy (disaggregated per type, e.g., electricity, natural gas and biomass) should be available from the pre and post renovation EPCs. Data on any energy exported to the grid should also be calculated based on the EPCs. National average energy tariffs for each type of energy applied to the corresponding energy import/export, and carbon tax rates - where applicable, should then be used to calculate the financial savings.
ADDITIONAL GUIDANCE

Social Housing
A sample of house types should be assessed for 12 months pre and post renovation (once the homes are occupied) to ensure that actual energy bills reduction is in line with calculated figures from EPCs.

Public Buildings
Actual energy bills should be monitored for 12 months pre and post-renovation (once the buildings are occupied) to ensure that financial savings are realised.

Private housing and tertiary buildings
Actual energy bills pre and post renovation should be assessed (once the buildings are occupied) on a sample of buildings to verify the calculated savings.

Degree Days
Once established a financial saving sub metric should be introduced which will include reference to degree days. Weather data will be required for 12 months pre retrofit and post retrofit using the same base temperature. Corresponding meter readings over the same period will be used to calculate £ saved per/year. The following data can then be extrapolated:

\[
\text{Savings in £/degree day} = \frac{(\text{pre-retrofit £/degree day}) - (\text{post-retrofit £/degree day})}{\text{degree day}}
\]

This information can be used to verify that the actual savings are not skewed by extreme weather events which are more likely going forward.

DATA COLLECTION PATHWAY

This is an example of how the Framework works if used on all buildings. For ease, municipalities may only use it initially on their municipal and/or social housing stock.

PROJECT LEVEL

- **Project 1 - Social Housing**
 - Pre Renovation EPC
 - Energy bills collected for
 - Post Renovation EPC
 - Retrofitted

- **Project 2 - Social Housing**
 - Pre Renovation EPC
 - Energy bills collected for
 - Post Renovation EPC
 - Retrofitted

- **Project 3 - Public Buildings**
 - Pre Renovation EPC
 - Retrofitted
 - Energy bills collected for
 - Post Renovation EPC

- **Project 4 - Private Residential**
 - Pre Renovation EPC
 - Retrofitted
 - Post Renovation EPC
 - Energy bills collected for

CITY LEVEL

- City Wide Data
 - Municipal
 - Social Housing
 - Private Residential

COUNTRY LEVEL

- City Wide Data
 - Annual Reporting
 - Project 1+2+3+4
 - Reduction 938,000 kWh/Annum
 - Reporting integrated with SECAPs

Build Upon2 Energy Renovation Framework
Appendix 1: Energy Efficiency Investment

Energy Renovation Works

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Heating System</th>
<th>Ventilation</th>
<th>DHW</th>
<th>Lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Insulation - Internal, External and Cavity</td>
<td>Heating System Upgrade</td>
<td>Ventilation System Upgrade</td>
<td>Low Flow Restrictors</td>
<td>Lighting Upgrade</td>
</tr>
<tr>
<td>Roof Insulation</td>
<td>Heating Control Upgrade</td>
<td></td>
<td>Fitting Pipe Insulation</td>
<td></td>
</tr>
<tr>
<td>Floor Insulation</td>
<td>Fitting Pipe Insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window Upgrade</td>
<td>External Door Upgrade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Door Upgrade</td>
<td>Airtightness Upgrades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airtightness Upgrades</td>
<td>External Solar Shading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Solar Shading</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When using other currency than the €, please convert the total amount into €, at the average of the daily exchange rates published in the C series of the Official Journal of the European Union, calculated over the corresponding reporting period.

Tax

Please state clearly if VAT is included or excluded from all stated costs.

Currency

Exchange Rate

To be included in energy renovation works | *Likely to be included in energy renovation works* | *Unlikely to be included in energy renovation works* | *Not to be included in energy renovation works*

Comments

[Appendix content continues with tables and further details on energy efficiency investments.]
<table>
<thead>
<tr>
<th>Associated Works</th>
<th>Likely to be included in energy renovation works</th>
<th>Unlikely to be included in energy renovation works</th>
<th>Not to be included in energy renovation works</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All additional works required as a result of the energy efficiency measure. For example: redecoration and moving services and windows when installing internal/external wall insulation, upgrading of electrics to accommodate heat pumps, repairs to flooring and skirting if required, making good of decoration</td>
<td>Planned Decoration</td>
<td></td>
<td>It is suggested that if any of the maintenance works listed are greater than 10% of the overall project costs they can be considered as maintenance works and not part of the energy renovation works.</td>
</tr>
<tr>
<td>Maintenance Works</td>
<td>Planned Decoration</td>
<td>Roof Repair</td>
<td>Upgrade of Rainwater Goods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repairs to Walls/Masonry</td>
<td>Groundworks for Damp Issues</td>
<td>Repairs to windows and Doors</td>
<td></td>
</tr>
<tr>
<td>Construction Works</td>
<td>Appliance Upgrade</td>
<td>Kitchen Install</td>
<td>Bathroom Install</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fitted Furniture</td>
<td>New Builds</td>
<td>Flood Resilience Works</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Groundworks for Damp Issues</td>
<td>Extensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Team Costs</td>
<td>Include any applicable design team costs paid to staff/external consultants to design and oversee the energy renovation projects. If the renovation project involves non energy renovation works, the proportion of design team costs can be estimated or can be based on the percentage of the construction costs applicable to energy renovation. The method for calculating design team costs should be clearly stated and recorded.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admin Costs</td>
<td>Internal staff hours should be recorded according to the hours spent on the renovation projects. If the renovation project involves non energy renovation works, the proportion of admin costs can be estimated or can be based on the percentage of the construction costs applicable to energy renovation. The method for calculating admin costs should be clearly stated.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Working Example

<table>
<thead>
<tr>
<th>4 Terrace properties</th>
<th>Itemised Project Costs</th>
<th>Energy Renovation Works</th>
</tr>
</thead>
<tbody>
<tr>
<td>External insulation</td>
<td>72,000</td>
<td>72,000</td>
</tr>
<tr>
<td>New windows and doors</td>
<td>60,000</td>
<td>60,000</td>
</tr>
<tr>
<td>New heat pumps</td>
<td>60,000</td>
<td>60,000</td>
</tr>
<tr>
<td>Demand control ventilation</td>
<td>16,000</td>
<td>16,000</td>
</tr>
<tr>
<td>2 ground floor accessible bathrooms</td>
<td>36,000</td>
<td>36,000</td>
</tr>
<tr>
<td>2 Ground floor accessible ramps</td>
<td>8,000</td>
<td>8,000</td>
</tr>
<tr>
<td>1 new kitchen fit out</td>
<td>12,000</td>
<td>12,000</td>
</tr>
<tr>
<td>Total Construction Costs</td>
<td>264,000</td>
<td>208,000</td>
</tr>
</tbody>
</table>

Renovation Percentage = Renovation Costs/Total Construction Costs

<table>
<thead>
<tr>
<th>Renovation Percentage = Renovation Costs/Total Construction Costs</th>
<th>79%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Design Team Fees</td>
<td>60,000</td>
</tr>
<tr>
<td>"Energy renovation Design Team Fees 60,000*0.79"</td>
<td>47,273</td>
</tr>
<tr>
<td>Total Admin Costs (Source: Internal Timesheets and Accounting)</td>
<td>35,000</td>
</tr>
<tr>
<td>"Energy renovation Admin Costs 35000*0.79"</td>
<td>27,576</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>359,000</td>
</tr>
</tbody>
</table>
Appendix 2: Contractor Questionnaire

This contractor questionnaire was developed by the UK Green Building Council, in partnership with Leeds City Council (pilot city) as part of the Build Upon² project.

BUILD UPON 2 - INFORMATION REQUIRED FROM CONTRACTOR when collating data at a project level

Env.1 Energy Renovation Rate – not applicable at a project level
Env.2 CO₂ emissions – pre & post EPC, historic fuel bills & meter readings
Env.3 Energy consumption – as Env.2
Env.4 Renewable Energy Production – MCS calculations
Env.UK1 EPCs – pre & post EPC

Soc.1 Fuel Poverty – pre & post EPC, modelling carried out by council
Soc.2 Indoor Air Quality – occupant questionnaire/onsite monitoring + contractor questionnaire
Soc.3 Winter Thermal Comfort – as Soc.2
Soc.4 Winter Thermal Comfort – as Soc.2
Soc.UK1 Climate Change Resilience – contractor questionnaire

Eco.1 Investment in Energy Renovation – contractors information
Eco.2 Energy Efficiency of Investment – calculated automatically
Eco.3 Jobs in Energy Renovation – contractors information
Eco.4 Upskilling in Energy Renovation – n/a at a project level
Eco.5 Financial Savings from Energy Renovation – pre & post EPC, MCS calculations

This contractor questionnaire was developed by the UK Green Building Council, in partnership with Leeds City Council (pilot city) as part of the Build Upon² project.

CONTRACTOR QUESTIONNAIRE (FOR EVERY INDIVIDUAL BUILDING)

Desktop analysis - could be inputted directly into a spreadsheet

Generally – Does this retrofit follow PAS 2035:2019? (Yes/No)

Soc.2 Indoor Air Quality

Criteria 1 – have measures been taken to ensure adequate ventilation? (Yes/No)
This can be assessed on completion of the retrofit through yes/no questions asked of the contractor? In the UK, these could be:
- Has the property’s existing ventilation system been assessed & deemed either adequate or where deemed inadequate, upgraded in accordance with Annex C of PAS 2035:2019 Retrofitting dwellings for improved energy efficiency – Specification and guidance? YES/NO
- Has all new ventilation equipment been tested and commissioned in accordance with the relevant part of BS EN 13141 Ventilation for buildings – Performance testing of components/products for residential ventilation? YES/NO/Not Applicable
- Where changes have been made, have the building owner and occupant been provided with guidance on how to maintain and use their ventilation system? YES/NO/Not Applicable

Must answer YES (or not applicable) to all questions to meet Criteria 1.

Criteria 2 – has the retrofit had an impact on IAQ? (IAQ is better, IAQ is worse, IAQ is neither better nor worse)
This can be assessed minimum 12 months following completion of the retrofit through occupant surveys and/or IAQ monitoring.
Criteria 1 – have measures been taken to ensure adequate winter comfort? (Yes/No)

This can be assessed on completion of the retrofit through yes/no questions asked of the contractor. In the UK, these could be:

- Has the property’s existing heating system been assessed in relation to calculated post-retrofit heat losses & deemed either adequate or where deemed inadequate, upgraded? YES/NO
- Has all new heating system equipment been installed and commissioned in accordance with PAS 2030:2019 Specification for the installation of energy efficiency measures in existing dwellings and insulation in residential park homes and where renewables are used the relevant MCS standards? YES/NO/Not Applicable
- Where changes to the heating system have been made, have the building owner and occupant been provided with guidance on how to maintain and use their heating system? YES/NO/Not Applicable

Must answer YES (or Not Applicable) to all 3 questions to meet Criteria 1.

Criteria 2 – has the retrofit had an impact on winter thermal comfort? (Building is more comfortable in winter, building is less comfortable in winter, building is neither more nor less comfortable in winter)

This can be assessed minimum 12 months following completion of the retrofit through occupant surveys and/or indoor temperature & RH monitoring.

Criteria 1 – have measures been taken to minimise summer overheating risk? (Yes/No)

This can be assessed on completion of the retrofit through yes/no questions asked of the contractor. In the UK, these could be:

- Has the property been modelled using dynamic simulation software to assess overheating risk? YES/NO
- According to the thermal model, does the property meet the criteria of CIBSE’s TM59 Design methodology for the assessment of overheating risk in homes or CIBSE’s TM52 The Limits of Thermal comfort: Avoiding Overheating in European Buildings for non-residential buildings? YES/NO
- Where the thermal model relies on opening windows for night-time cooling, can they be securely left sufficiently open at night? YES/NO/Not Applicable

Must answer YES (or not applicable) to all three questions to meet Criteria 1.

Criteria 2 – has the retrofit had an impact on summer thermal comfort? (Building is more comfortable in summer, building is less comfortable in summer, building is neither more nor less comfortable in summer)

This can be assessed minimum 12 months following completion of the retrofit through occupant surveys and/or indoor temperature & RH monitoring.

CONTRACTOR DATA (FOR PROJECT AS A WHOLE)

Desktop analysis - could be inputted directly into a spreadsheet

Eco.1 Investment in Energy Renovation

This can be assessed on completion of the retrofit through the following data:

- Amount of money spent (not anticipated budget)
- Breakdown by funding type (public, private)
- Breakdown by where money was spent (tax, energy renovation works, associated works, maintenance works, uplift, project team costs)
- Breakdown by whether money was spent locally, nationally or internationally

Eco. 3 Jobs in Energy Renovation

This can be assessed on completion of the retrofit through the following data. It will need updating 12 months post completion to allow for work carried out post-practical completion:

- no. of FTE labour days supported during the project (consultants, main contractor, sub-contractors)
- no. & type of businesses involved in the project (consultants, main contractor, sub-contractors, suppliers, manufacturers)
Appendix 3: Tenant Questionnaire

UKGBC & LEEDS CITY COUNCIL - BUILD UPON

POS-RETROFIT OCCUPANT QUESTIONNAIRE

BACKGROUND
Name of person filling out this side of the survey: ____________________________

Retrofit Programme Name: __

Date of questionnaire: ____________________________

Date retrofit works commenced on this site: ________________________

Date retrofit works finished on this site: ____________________________

Property Address: ___

Property Unique Reference Number: ____________________________

Gas Meter Type & Reading: Standard Pre-payment Smart Reading

Elec Meter Type & Reading: Standard Pre-payment Smart Reading

Have photos been taken of utility bills for the last 12 months? Yes No

Have occupants signed the utility bill disclaimer? Yes No

Is this home ... detached semi-detached terraced flat other

Is this home ... owner-occupied social tenancy private tenancy HMO

What fuel is used for cooking: gas, electricity or other...? Hob oven

VENTILATION & DAMP
If a PAS 2035 Ventilation Assessment has been undertaken for this property, it is not necessary to fill in this section. If in doubt, fill in this section.

What rooms does this home have? In the table below, tick all that apply.

Do any rooms have signs of damp? Note one of the following options for each room: N for none, C for condensation, L for leaks, D for damp, M for mould.

What ventilation equipment is installed in each room? Note one of the following options for each room: N for no equipment; F for intermittent extract fan; E for air extract linked to MEV, MVHR or PSV; T for air inlet or trickle vent; P for PIV fan; S for single room ventilator with heat recovery.

MEV = continuous mechanical extract ventilation, MVHR = mechanical ventilation with heat recovery, PSV = passive stack ventilation (not common), PIV = positive input ventilation

Which rooms have min 10mm undercuts on doors? In the table below, tick all rooms that apply.

Which rooms have windows that can be opened? In the table below, tick all rooms that apply.

Please note any other comments here or on an additional sheet, if necessary: eg. blocked air inlets, disfunctional fans, blocked or open chimneys, more detail about moisture problems

Questionnaire Version 5, 14.09.21, developed by UKGBC
winter leave these questions blank.
Please tick your rating on each scale.

WINTER COMFORT

Since the retrofit...how would you describe typical conditions in WINTER? If you have not lived here in winter leave these questions blank. Please tick your rating on each scale.

<table>
<thead>
<tr>
<th>Temperature in Winter</th>
<th>Uncomfortably hot/cold</th>
<th>Comfortable</th>
<th>If uncomfortable, is it generally...?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 3 45</td>
<td>Stable</td>
<td>100 hot 100 cold</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air in Winter</th>
<th>Uncomfortably dry/humid</th>
<th>Comfortable</th>
<th>If uncomfortable, is it generally...?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 3 45</td>
<td>Fresh/dry</td>
<td>100 dry 100 humid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh/humid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions in Winter generally</th>
<th>Uncomfortably Draughty</th>
<th>Comfortable</th>
<th>If uncomfortable, is it generally...?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 3 45</td>
<td>Still</td>
<td>100 dry 100 humid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions in Winter generally</th>
<th>Unsatisfactory overall</th>
<th>Satisfactory overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 3 45</td>
<td></td>
</tr>
</tbody>
</table>

SUMMER COMFORT

Since the retrofit...how would you describe typical conditions in SUMMER? If you have not lived here in summer leave these questions blank. Please tick your rating on each scale.

<table>
<thead>
<tr>
<th>Temperature in Summer</th>
<th>Uncomfortably hot/cold</th>
<th>Comfortable</th>
<th>If uncomfortable, is it generally...?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 3 45</td>
<td>Stable</td>
<td>100 hot 100 cold</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air in Summer</th>
<th>Uncomfortably dry/humid</th>
<th>Comfortable</th>
<th>If uncomfortable, is it generally...?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 3 45</td>
<td>Fresh/dry</td>
<td>100 dry 100 humid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh/humid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions in Summer generally</th>
<th>Uncomfortably Draughty</th>
<th>Comfortable</th>
<th>If uncomfortable, is it generally...?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 3 45</td>
<td>Still</td>
<td>100 dry 100 humid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions in Summer generally</th>
<th>Unsatisfactory overall</th>
<th>Satisfactory overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 3 45</td>
<td></td>
</tr>
</tbody>
</table>

ENERGY USE & CONTROLS

Since the retrofit...how much control do you personally have over the following? Please tick your rating on each scale. Tick the side boxes if having control is important to you.

<table>
<thead>
<tr>
<th>Heating System: No Control</th>
<th>Heating System: Full Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 3 45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ventilation System: No Control</th>
<th>Ventilation System: Full Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 3 45</td>
</tr>
</tbody>
</table>

If you have anything else to add about your energy or comfort needs please write it here: eg. unusual appliances like hot tubs/aquariums, activities like cooking often for others, vulnerable occupants.

Have you received a heating & ventilation guide since completion of the retrofit / when you moved in?

<table>
<thead>
<tr>
<th>yes</th>
<th>no</th>
</tr>
</thead>
</table>

This tenant questionnaire was developed by the UK Green Building Council, in partnership with Leeds City Council (pilot city) as part of the Build Upon² project.
In 2021, Dublin City Council retrofitted 300 homes. What was the impact?

Environmental
- **CO₂ Emissions**: 1,260 ton yr saved
- **Energy Consumption**: Reduced from 150 kWh/m².yr to 80 kWh/m².yr
- **Renewable Energy**: 150,000 kWh/yr produced by PVs on the 300 homes supplying 60% of the homes' energy needs

Social
- **Indoor Air Quality**: Improved in 65% of homes
- **Winter Thermal Comfort**: Improved in 100% of homes with fewer draughts and warmer rooms
- **Summer Thermal Comfort**: Improved in 50% of homes

Economic
- **Investment in Energy Renovation**: €7.5 m total project cost
- **Financial Savings**: €25,000 spent per home on average
- **Energy Bills reduced**: Energy Bills reduced by €400/yr to €900/yr per home on average
- **Income from PVs**: €85/yr per home on average
- **Jobs**: 60 FTE jobs directly supported throughout the 18 month project

Example of how annual impact of energy renovation could be presented to the general public if the Framework was used at scale.
Platinum Members

Email info@cedzik.org / furkan.gultekin@cedzik.org
Web www.cedzik.org
Twitter @cedzik #BUILDUPON